Dear user,
we have changed our website appearance and have created barrier-free access with techniques such as CSS. Unfortunately, your browser does not completely support these web standards, or the use of stylesheets has been switched off.

Go to Navigation - Skip Metanavigation |
Go to Content - Skip Navigation


Target Group Navigation

Leibniz Universität Hannover - Startpage Contact Sitemap Extended Search
Leibniz Universität Hannover: Main Building of the University
Leibniz Universitt HannoverStudentsProspective StudentsAlumniEmployeesScientistsBusinessMediaSearch
Startpage > News > Press News > Press Information > PI 201 Quest 2011

Einsteins „Spukhafte Fernwirkung“ verbessert
Präzisionsinstrumente

Verschränkte Zustände für hochgenaue Uhren

Abbildung: Bernd Lücke Atome, die Bausteine der Natur, können als äußerst präzise Messinstrumente eingesetzt werden. So wird beispielsweise seit den1960er Jahren unsere Zeit durch die innere Schwingungsfrequenz von Cäsium-Atomen definiert. In einer hochpräzisen Atomuhr wird die innere Schwingungsfrequenz der Atome gemessen und in einen Sekundentakt umgewandelt. Diese Frequenz kann allerdings nicht mit beliebiger Genauigkeit bestimmt werden. Es gibt eine fundamentale Grenze der Genauigkeit durch das sogenannte Schrotrauschen. Dies sind grundsätzliche, statistische Schwankungen der Messwerte, die auftreten, wenn die Atome unabhängig voneinander schwingen. Einer Forschergruppe des Exzellenzclusters QUEST (Centre of Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover ist es jetzt in Zusammenarbeit mit Wissenschaftlern aus Spanien, Italien und Dänemark gelungen, diese Grenze des Schrotrauschens zu überwinden. Der Artikel “Twin matter waves for interferometry beyond the classical limit” erscheint online am 13. Oktober 2011 bei Science Express.

In einer Atomuhr pendeln die Atome stufenlos zwischen zwei inneren Zuständen hin und her. Zur Bestimmung der Zeit müssen die Schwingungen in einem bestimmten Zeitraum gezählt werden. Dies erfordert, den inneren Zustand aller Atome zu messen. Während der Messung verhalten sich die Atome wie unabhängige Würfel, da sie trotz der stufenlosen Schwingung immer nur in einem der beiden inneren Zustände gemessen werden können. Die Messung eines der beiden inneren Zustände entspricht hier dem Würfeln einer geraden oder ungeraden Augenzahl. Wenn 100 Würfel gleichzeitig geworfen werden und die Menge der geraden und ungeraden Augenzahlen gezählt wird, erwartet man ein Ergebnis von 50 geraden und 50 ungeraden Zahlen. Allerdings kommen wegen der statistischen Wahrscheinlichkeit und der endlichen Anzahl der Würfel häufig kleine Abweichungen vor - zum Beispiel 48 gerade und 52 ungerade Zahlen. Diese Abweichungen werden als Schrotrauschen bezeichnet. Sie treten auch auf, wenn der innere Zustand der Atome gemessen wird und begrenzen daher die Genauigkeit einer Atomuhr. Diese Genauigkeitsgrenze kann nur überwunden werden, indem die Eigenarten der Quantenmechanik genutzt werden.

In der Quantenmechanik können zwei Atome miteinander „verschränkt" werden. Die beiden Atome verhalten sich dann wie ein Paar Würfel, das auf wundersame Weise immer genau eine gerade und eine ungerade Zahl zeigt. Wenn jetzt 50 solcher verschränkter Würfelpaare geworfen werden, erhält man immer 50 gerade und 50 ungerade Zahlen und die physikalische Grenze des Schrotrauschens ist überwunden. Diese Besonderheit der Physik war lange Zeit umstritten. Sogar Albert Einstein bezeichnetet diesen Effekt als „spukhafte Fernwirkung" und war generell skeptisch: „Gott würfelt nicht." Heute ist Verschränkung ein wesentlicher Bestandteil unseres Verständnisses von Natur und ihre Existenz wurde in vielen physikalischen Experimenten nachgewiesen.

Die Experimente in Hannover haben gezeigt, dass solche verschränkten Paare von Atomen bei extrem kalten Temperaturen hergestellt werden können. Zu diesem Zweck kühlen die Wissenschaftler einige zehntausend Rubidium-Atome mit Lasern bis fast an den absoluten Temperaturnullpunkt. Die kalten Rubidium-Atome verhalten sich wie kleine Magnete, bei denen der innere Zustand durch die magnetische Ausrichtung definiert ist. Zunächst mit horizontaler Ausrichtung vorbereitet, bilden die Atome dann verschränkte Paare mit je einem ab- und einem aufwärts gerichteten Atom, die den geraden oder ungeraden Würfelergebnissen entsprechen. „In einer Reihe von Messungen haben wir gezeigt, dass diese verschränkten Atompaare in der Tat für hochgenaue Messungen jenseits der Grenzen des Schrotrauschens geeignet sind“, erklärt Dr. Carsten Klempt, Physiker am Institut für Quantenoptik der Leibniz Universität Hannover. „Dieser Prozess, den Einstein noch als „spukhafte Fernwirkung“ abgetan hat, wird zukünftige Atomuhren sehr viel genauer machen“, so Klempt weiter.

Hochpräzise Atomuhren sind für die Verbesserung einer Vielzahl von modernen Entwicklungen wichtig, darunter das Global Positioning System (GPS), die präzise Synchronisation der Stromnetze oder des Internets. Auch im Bereich der Erdbeobachtung können Messungen der Beschleunigung, Rotation oder Schwerkraft mit Hilfe von verschränkten Atomen deutlich verbessert werden.

Der Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time-Research) wird seit November 2007 innerhalb der Exzellenzinitiative von Bund und Ländern gefördert. Die Hauptforschungsbereiche des Clusters sind das Quantenengineering und die Raum-Zeit-Forschung. Beteiligt sind sechs Institute der Leibniz Universität Hannover sowie die folgenden externen Partner: Das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) mit dem Gravitationswellendetektor GEO600, das Laser Zentrum Hannover e.V., die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen.


Notes for Editors

Für weitere Informationen stehen Ihnen Dr. Carsten Klempt vom Institut für Quantenoptik unter Telefon +49 511 762 2238 oder per E-Mail unter klempt@iqo.uni-hannover.de sowie Dr. Ude Cieluch, QUEST Kommunikation, unter Telefon +49 511 762 17481 oder per E-Mail unter ude.cieluch@quest.uni-hannover.de gerne zur Verfügung.

Presseinformation vom 13.10.2011


Zusatzinformationen

Search Press Releases


Topics

Period

Service


The content of this page can be subscribed to via an RSS feed. Detailed information about the RSS feeds of Leibniz Universität:


Footer