Dear user,
we have changed our website appearance and have created barrier-free access with techniques such as CSS. Unfortunately, your browser does not completely support these web standards, or the use of stylesheets has been switched off.
Go to Navigation - Skip Metanavigation |
Go to Content - Skip Navigation
Target Group Navigation
![]() |
||||||||||||||
|
Hauptnavigation
|
Veranstaltungskalender
|
|||||||||||||
Kurzbeschreibung |
Computational homogenization is an approach which has been widely used for the study of heterogeneous materials. Multi-scale analysis stands for the coupling between the scales, the simulation of a complex pattern of a microscopic structure and eventually the usage of the required information in a macroscopic, structural scale. In this framework, a numerical scheme is initially presented, for the investigation of masonry structures. The heterogeneity induced by the bricks and the mortar joints, is taken into account with a simplified numerical homogenization model, applied for elastic material properties. Next, a multi-scale contact computational homogenization model is presented, for the study of composite materials. Thus, a nested numerical scheme consisted of two boundary value problems, is considered. The main idea of the proposed approach is related to the implementation of a classical unilateral contact law, in the microscopic scale of the problem. This can be considered as an initial step towards coupling computational homogenization, in a fem2 sense, with contact mechanics. |
Weitere Informationen |
|
Referent/innen |
Dr.-Ing. Georgios A. Drosopoulos (Institute of Computational Mechanics and Optimization Technical University of Crete, Chania, Greece) |
Veranstalter |
MUSIC Graduate School "Multiscale Methods for Interface Coupling" |
Termin |
Montag, 13. Mai 2013, 15:00 bis 16:30 Uhr |
Ort |
Institut fßr Kontinuumsmechanik, MUSIC (Gebäude 3403, MUSIC Seminarraum, A501 (5. Etage))
Ihr Browser kann diese Seite leider nicht anzeigen, da er keine eingebetteten Frames unterstützt. Sie können die eingebettete Seite über den folgenden Verweis aufrufen: Kartenansicht Ein Verschieben des Kartenausschnitts ist mit gedrückter Maustaste möglich. |
Zusatzinformationen
Footer