Dear user,
we have changed our website appearance and have created barrier-free access with techniques such as CSS. Unfortunately, your browser does not completely support these web standards, or the use of stylesheets has been switched off.

Go to Navigation - Skip Metanavigation |
Go to Content - Skip Navigation


Target Group Navigation

Leibniz Universität Hannover - Startpage Contact Sitemap Extended Search
Leibniz Universität Hannover: Main Building of the University
Leibniz Universität HannoverStudentsProspective StudentsAlumniEmployeesScientistsBusinessMediaSearch
Startpage > News > Calendar of Events > Jacobian algebras from ...

Veranstaltungskalender

Jacobian algebras from closed surfaces, derived equivalences and Brauer graph algebras

Oberseminar Algebra + Algebr. Kombinat., 13.05.13

Kurzbeschreibung

To any ideal triangulation of a surface with marked points Labardini-Fragoso has associated a quiver with potential, thus linking the work of Fomin, Shapiro and Thurston on cluster algebras arising from marked surfaces with the theory of quivers with potentials and their mutations initiated by Derksen, Weyman and Zelevinsky.

We show that for any surface without boundary, the associated quivers with potentials are not rigid and their (completed) Jacobian algebras are finite-dimensional, symmetric and derived equivalent. This settles a question that has been open for some time and also provides an explicit construction of infinitely many families of finite-dimensional symmetric Jacobian algebras. Moreover, these Jacobian algebras are closely related to Brauer graph algebras arising naturally from triangulations of the surface.

Weitere Informationen

www.iazd.uni-hannover.de/oberseminar.html

Referent/innen

Dr. Sefi Ladkani (Universität Bonn)

Veranstalter

Institut fĂźr Algebra, Zahlentheorie und Diskrete Mathematik

Termin

Montag, 13. Mai 2013, 14:15 bis 15:45 Uhr

Ort

Hauptgebäude (Gebäude 1101, A410)
Welfengarten 1, 30167 Hannover

Ein Verschieben des Kartenausschnitts ist mit gedrückter Maustaste möglich.

Die Karte wurde uns freundlicherweise von Herrn Dr. Tobias Dahinden, Institut für Kartographie und Geoinformatik zur Verfügung gestellt.


Zusatzinformationen


Footer