UniversitätAktuelles & PresseVeranstaltungen
Vertex-Maximal Lattice Polytopes Contained in 2-Simplices
08 Nov
08. November 2018
Oberseminar zur Algebra und Algebraischen Kombinatorik

Vertex-Maximal Lattice Polytopes Contained in 2-Simplices

Motivated by the problem of bounding the number of rays of plane tropical curves we study the following question: Given n∈N and a unimodular 2-simplex Δ what is the maximal number of vertices a lattice polytope contained in n⋅Δ can have? We determine this number for an infinite subset of N by providing a family of vertex-maximal polytopes and give bounds for the other cases. This is joint work with Jan-Philipp Litza and Kirsten Schmitz.


Dr. Christoph Pegel (Leibniz Universität Hannover)


Institut für Algebra, Zahlentheorie und Diskrete Mathematik


08. November 2018
14:15 Uhr - 15:45 Uhr


Geb.: 1101
Raum: a410
Welfengarten 1
30167 Hannover
Standort anzeigen