UniversityNews & EventsEvents
Tautological p-Kazhdan-Lusztig theory for cyclotomic Hecke algebras
21 Jan
21. January 2021
Oberseminar zur Algebra und Algebraischen Kombinatorik

Tautological p-Kazhdan-Lusztig theory for cyclotomic Hecke algebras

We discuss a new explicit isomorphism between (truncations of) quiver Hecke algebras and Elias–Williamson’s diagrammatic endomorphism algebras of Bott–Samelson bimodules. This allows us to deduce that the decomposition numbers of these algebras (including as examples the symmetric groups and generalised blob algebras) are tautologically equal to the associated p-Kazhdan–Lusztig polynomials, provided that the characteristic is greater than the Coxeter number. This allows us to give an elementary and explicit proof of the main theorem of Riche–Williamson’s recent monograph and extend their categorical equivalence to cyclotomic Hecke algebras, thus solving Libedinsky–Plaza’s categorical blob conjecture

Speaker

Dr. Chris Bowman (University of Canterbury)

 

 

Organiser

Institut für Algebra, Zahlentheorie und Diskrete Mathematik

Date

21. January 2021
15:15 o'clock - 16:30 o'clock

Public contact

Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Welfengarten 1
30167 Hannover
Tel.: 762-3337
Fax: 762-5490
sekretariat-d@math.uni-hannover.de

Location

Online in StudIP, per BBB im e-a410


Url