Wege in die Forschung II
Projektförderung für Nachwuchswissenschaftler/-innen an der Leibniz Universität Hannover

Geförderte Anträge 2009
KURZBESCHREIBUNG

Ziel des beantragten Forschungsvorhabens ist die Entwicklung effizienter und robuster Verfahren zur 3D-Rekonstruktion einer Szene aus 2D-Videodaten. Das als Structure-from-Motion bezeichnete Fachgebiet der Bildverarbeitung wird seit vielen Jahren sehr erfolgreich erforscht, aber stellt immer noch ein Problem dar, das für viele praktische Anwendungen nicht zufriedenstellend gelöst ist. Vor allem Stabilität, Effizienz und das Problem der Schätzung fehlender Daten sind die Herausforderungen an die aktuelle Forschung: Verfahren, die ein globales Optimum berechnen, können nicht oder nur schlecht mit nicht sichtbaren 3D-Punkten umgehen; Verfahren, die eine Sequenz stückweise rekonstruieren, sind anfällig für degenerierte Geometrien; Verfahren, die beide Probleme handhaben können, sind anfällig für lokale Minima der Kostenfunktion. Ein 3D-Rekonstruktionsverfahren sollte ein globales Optimum berechnen, um damit robust gegenüber degenerierten Geometrien in Teilesequenzen zu sein, aber gleichzeitig mit komplexen und dynamischen Szenen umgehen können, in denen viele 3D-Punkte nicht gleichzeitig sichtbar sind.

Zusammenfassend planen wir die Erforschung geometrisch und algebraisch beschränkter Faktorisierungsmethoden zur 3D-Szenenrekonstruktion.

Projektdauer: 24 Monate
KURZBESCHREIBUNG

Die ozeanische Kruste unterliegt nach ihrer Bildung an den mittelozeanischen Rücken einer ständigen und tiefgreifenden Veränderung durch Meerwasser-getriebene Fluid-Zirkulation (hydrothermale Alteration). Moderne geochemische Untersuchungen belegen, dass solche Fluide extrem hohe Temperaturen erreichen können, die sogar partielles Aufschmelzen der frisch gebildeten, gerade erstkristallisierten tiefen ozeanischen Kruste auslösen kann, was zur Bildung von intermediären bis granitischen Gesteinen führen kann (sog. "ozeanischen Plagiograniten").

Dieses Konzept ist innovativ, und hat einen großen Impakt auf die rezeptive Entwicklung der ozeanischen Kruste. Das beantragte Projekt zielt darauf, diesen Prozess des partiellen Aufschmelzens der tiefen ozeanischen Kruste, die im Wesentlichen aus dem Gestein "Gabbro" besteht, in Gegenwart von NaCl-reichen Fluiden experimentell zu simulieren, um vor allem die Zusammensetzung der zu generierenden Schmelzen zu bestimmen. Die Schmelzexperimente sollen bei Drücken von 50 bis 100 MPa und Temperaturen zwischen 800 und 1000°C durchgeführt werden, mit einem typischen ozeanischen Gabbro als Ausgangsmaterial, der durch das IODP-Programm an Site U1309 erbohrt wurde (Expedition 304/305; MAR 30°10.12’N, 42°07.11’W, Atlantis Massiv).

Darüber hinaus haben die beabsichtigten Untersuchungen das Potential, neue Erkenntnisse über die Entstehung der ersten Kontinente in der frühen Entwicklung unseres Planeten zu gewinnen, weil angenommen wird, dass ähnliche fluid-getriebene Aufschmelzprozesse von mafischer Kruste auch in der frühen Erdgeschichte (Hadean) statt gefunden haben.

Dieses Projekt fügt sich in den Rahmen des koordinierten Forschungsprogrammes "Geofluxes" (Forschungsinitiative Geoprozesse) ein. Die Ergebnisse sollen als Vorarbeiten dienen um Anträge im Rahmen von dem DFG-Schwerpunktprogramm „IODP, SPP 527“ und von einem geplanten SPP „The Early Earth“ einzureichen.

Projektaufzeit: 24 Monate
Nichtkollinearer parametrischer Oszillator mit Femtosekunden Pulsdauer

Dr. Thomas Binhammer

KURZBESCHREIBUNG

Zur Erzeugung sehr kurzer Laserpulse mit Pulsdauern im Bereich weniger Femtosekunden ist bisher Titan-Saphir das einzig geeignete Lasermaterial. Alternative Methoden zur Pulserzeugung durch optisch parametrische Oszillatoren (OPA) haben dabei bisher sehr wenig Aufmerksamkeit erfahren, was vor allem durch den Mangel an geeigneten Pumpquellen begründet ist. Allerdings bietet diese Methode die Möglichkeit nichtlinearer Prozesse direkt im Resonator, wodurch die zugänglichen Frequenzbereiche extrem erweitert werden.

Projektlaufzeit: 12 Monate
Gebrauchsdauervorsage von Holzbauteilen im Außenbereich auf Basis von Dosis-Wirkungs-Funktionen

Dr. Christian Brischke
Institut für Berufswissenschaften im Bauwesen

KURZBESCHREIBUNG

Holz ist ein nachwachsender und ökologisch vorteilhafter Roh- und Werkstoff und spielt deshalb eine Schlüsselrolle für die Nachhaltigkeit im Baubereich. Aufgrund seiner organischen Natur ist er aber auch durch verschiedene Mikroorganismen abbaubar. Dies stellt für die Entsorgung von Holzprodukten zwar einen Vorteil dar, begrenzt aber auch die Gebrauchsdauer von Holzbauteilen, die sich bislang nicht ausreichend genau prognostizieren lässt.

Übergeordnetes Ziel des Forschungsvorhabens ist deshalb die Entwicklung einer Methode zur Vorhersage der Gebrauchsdauer von Holzbauteilen im Außenbereich durch einen neuartigen interdisziplinären Ansatz unter Berücksichtigung aller relevanten biologischen, holzphysikalischen, holzbautechnischen und mathematischen Aspekte.

Das zu entwickelnde Modell dient der Gebrauchsdauervorhersage für verschiedene Holzbauteile und soll die Basis für eine Software bilden, mit der sich für Planer und Ausführende eine gesicherte Gebrauchsdauervorhersage durchführen und der Einfluss verschiedener baurelevanter Parameter aufzeigen lässt.

Projektaufzeit: 24 Monate
Mikromechanische Modellierung von inelastischen Korngrenzeneffekten in Polykristallinen Materialien

Dr.-Ing. Britta Hirschberger

KURZBESCHREIBUNG

Im Projekt soll zunächst die Gleitung von Versetzungen auf einer Gleitebene in idealisierten Randwertproblemen modelliert werden, wobei für die Evolution der geometrisch notwendigen und der statistisch verteilten Versetzungen ein geeigneter Ansatz gewählt werden soll, der die Rückspannung aus der Versetzungsinteraktion entsprechend berücksichtigt. Auf diesen elementaren Ergebnissen aufbauend soll der allgemeine Fall des Gleitens auf mehreren Gleitebenen, wobei zusätzlich Interaktionen zwischen den Versetzungen verschiedener Gleitebenen auftreten, untersucht werden.

Projeklaufzeit: 12 Monate
Leistungssteigerung hochdynamisch angeregter serieller Strukturen durch Adaptronik

Dr. Jochen Immel

KURZBESCHREIBUNG

Der Forschungsbereich der Adaptronik beinhaltet das Einbringen von geschlossenen Regelkreisen in mechanische Strukturen, wodurch die Eigenschaft der Struktur gezielt auf eine definierte Anforderung hin beeinflusst werden kann. Als Aktoren werden insbesondere piezobasierte Aktorformen eingesetzt, welche als Folie oder aber als Stack verfügbar sind. Das Material wandelt elektrische Leistung über Änderung der Ladungsverteilung in der Kristallstruktur in mechanische um. Dieser Vorgang kann hochdynamisch bei Frequenzen von bis zu ca. 35 kHz erfolgen und kann damit auch hochfrequente Strukturschwingungen bedämpfen. Im statischen Betrieb der Piezoaktoren besteht über weitere adaptronische Regelkreise die Möglichkeit, im einstelligen Mikrometerbereich eine Feinpositionierung vorzunehmen.

Projektlaufzeit: 24 Monate
Environmental Change and its Implications for Population Migration – Evidence from India and Ghana

Dr. Katharina Raabe

KURZBESCHREIBUNG

Agricultural development assumes an important role for reducing rural poverty, but insufficient investment in agriculture, inadequate rural service delivery systems and environmental change constrain agricultural sector growth. Migration is one approach that has been applied to reduce the consequent vulnerability and poverty of rural households in uncertain environments. Migration thus has a development dimension and managing migration for poverty reduction requires a sound understanding of the reasons for migration. The proposed project aims to identify and analyze the local frame conditions and factors that induce people, especially women, to migrate from rural areas in India and Ghana. The project specifically examines the link between (1) migration and environmental change and (2) migration and local governance and (3) migration and the provision of services in areas that are directly relevant for achieving the Millennium Development Goals, namely agricultural extension, drinking water, health, and education. India and Ghana are the selected case study countries as they experience substantial migration flows and severe environmental challenges. The latter pose a severe threat for achieving long-term food security and for further reducing poverty, especially in the light of climate change. The findings of the project are expected to identify the drivers of migration, to provide related insights into the bottlenecks of (gender-equitable) agricultural and rural development, and to show that case- and context-specific policy interventions rather than one-size-fits-all policy approaches are needed to promote agricultural and rural development and to increase the benefits from migration.

Projektlaufzeit: 18 Monate
Implementierung einer optischen Methode zur Unterscheidung zwischen Zahn und modernen Zahnfüllkompositen

Dr. Luca Spani Molella

KURZBESCHREIBUNG

Im Rahmen dieses Projektes wird am Hannoverschen Zentrum für Optische Technologien (HOT) in Kooperation mit der Klinik für Zahnerhaltung, Parodontologie und Präventive Zahnheilkunde der Medizinischen Hochschule Hannover (Prof. Dr. Gönay und Frau Dr. Jacker-Guhr) untersucht, in welchem Ausmaß beim Entfernen von zahnfarbenen Füllungsmaterialien aus bereits operierten Zähnen gesundes Gewebe entfernt wird, wenn eine Unterscheidung zwischen Zahngewebe und Füllsubstanz per Auge nicht mehr möglich ist. Dieses Problem tritt bei modernen Füllmaterialien immer häufiger auf.

Projektdauer: 18 Monate
Entwicklung von aptamermodifizierten Quantum Dots für die Biotechnologie und die Molekulare Diagnostik

Dr. rer. nat. Dipl. Chem. Johanna Gabriela Walter
Institut für Technische Chemie

KURZBESCHREIBUNG

Entwicklung und Anwendung von Aptamer-modifizierten Quantum Dots

In der Biotechnologie und der molekularen Diagnostik werden immer sensitivere analytische Verfahren zur Detektion von Proteinen in komplexen biologischen Proben benötigt.

Insbesondere in der Immunohistologie könnte die Verwendung von photostabilen Quantum Dots die über eine Aptamer-induzierte Avidität verfügen zu einer stabileren und sensitiveren Detektion von Markerproteinen führen.
Projektdauer: 18 Monate
Atomare Dynamik und Diffusion in neuen nanokristallinen Materialien zur Energiespeicherung

Dr. rer. nat. Martin Wilkening
Institut für Physikalische Chemie und Elektrochemie

KURZBESCHREIBUNG

Ziel des geförderten Projektes ist es, die elementaren Diffusionsschritte der Li-Ionen in nanostrukturierten Funktionsmaterialien möglichst detailliert unter Zuhilfenahme von geeigneten Modellsystemen zu studieren. Dazu wird die atomare Dynamik der Ladungsträger wechselseitig mit Hilfe der Impedanz- und Festkörperkernresonanzspektroskopie auf einer möglichst großen Längen- und Zeitskala aus mikro- und makroskopischer Sicht studiert [1-3]. An der LUH steht dafür u.a. ein einzigartig breites Methodenrepertoire der magnetischen Kernresonanzspektroskopie zur Verfügung [4,5].

Projektlaufzeit: 20 Monate
Laccasen aus Pilzen – Lebensmittel als neue Werkzeuge der Weißen Biologie

Dr. Kateryna Zelenia
Institut für Lebensmittelchemie

KURZBESCHREIBUNG

Projektlaufzeit: 24 Monate