05 Dez
05. Dezember 2023
Oberseminar Analysis und Theoretische Physik

On magnetoviscoelastic fluids in 3D

I will introduce a thermodynamically consistent model for a magnetoviscoelastic fluid in 3D. Existence, uniqueness, and asymptotic behavior of strong solutions is studied in the framework of quasilinear parabolic systems and maximal regularity in $L_p$-spaces. It will be shown that the critical points of the entropy functional with prescribed energy correspond exactly to the equilibria of the system. Constant equilibria are normally stable: solutions that start close to a constant equilibrium exist globally and converge exponentially fast to a (possibly different) constant equilibrium. Moreover, it will be shown that the negative entropy serves as a strict Lyapunov functional and that every solution that is eventually bounded in the topology of the natural state space exists globally and converges to the set of equilibria.


Prof. Dr. Guieri Simonett, Vanderbilt University Nashville


Institut für Angewandte Mathematik


05. Dezember 2023
15:00 Uhr - 17:00 Uhr


Antje Günther
Institut für Angewandte Mathematik
Welfengarten 1
30167 Hannover
Tel.: 0511/762-3251
Fax: 0511/762-3988


Geb.: 1101
Raum: C311
Welfengarten 1
30167 Hannover
Standort anzeigen